Overlapping in Male and Female Speech in Brunei English Informal Conversations

Khairunnisa Ghani
Universiti Brunei Darussalam

Abstract

This paper discusses the occurrence of overlapping speech in male and female English conversations in an informal setting in Brunei. The research looks at recordings of same-sex conversations by ethnically Malay first-year undergraduates. Eight female-female and eight male-male conversations were recorded of participants completing a map task. Previous research has suggested that overlapping is more likely to occur in female conversations, but these findings were based on conversations occurring in places such as the USA and UK. The current research suggests that the same patterns do not occur in Brunei.

Introduction

Overlaps occur when speakers in a conversation talk simultaneously. They can either be cooperative to show interest in the conversation, or they can reflect competition for the floor. It has been claimed that more overlapping tends to occur in female conversations, as it is used as a form of cooperative speech, and men tend not to overlap so much because they see it more as a competitive strategy with one speaker attempting to dominate the other (Tannen, 1994). However, these claims are based on research in countries like the USA and UK. Whether overlapping occurs more among women than men in Brunei has not previously been studied.

Speakers in collaborative tasks usually do not intend to dominate, so overlaps are generally supportive rather than obstructive, and most of them do not disrupt turn-taking because the participants often anticipate each other’s speech (Tannen, 1994). At the same time, speakers tend to avoid gaps, so overlaps often occur in a conversation (Sacks, Schegloff & Jefferson, 1974). Overlaps are more likely to occur in casual conversations when speakers know each other well (West & Zimmerman, 1983). Also, speakers sometimes overlap to show enthusiasm in participating in the conversation (Tannen, 1994). When they can predict what is being said, they may start their next turn early (Heldner & Edlund, 2010).

In many studies in which overlapping is discussed, interruption is also mentioned. While overlaps can be defined as the occurrence of simultaneous speech, there seems to be little agreement concerning the definition of interruptions. Cooperative overlaps can occur without being considered as interruptions, so interruptions can be regarded as a subcategory of overlaps. While overlaps are neutral, interruptions have a negative connotation, involving disruption of turn-taking as well as violation of the other speaker’s right to talk (Tannen, 1983). Identifying overlaps is straightforward: we just look for simultaneous speech. However, classifying the type of overlap is much more difficult because it is interpretive rather than descriptive (Tannen, 1983).

However, it is important to try to distinguish the types of overlaps that occur. This paper classifies three types of overlaps: competitive, collaborative, and back-channeling. Competitive overlaps are when the second speaker tries to take the turn, so the speakers are competing for the turn to speak (West & Zimmerman, 1983). Collaborative overlaps function to help build rapport between speakers, and the speakers’ intention is to support each other (Tannen, 1994).
Heldner and Edlund (2010) mention that “many overlaps occur because the next speaker is confident about what the current speaker will say, and deliberately responds before the current speaker finishes” (p.556). Indeed in collaborative overlaps, sometimes one speaker finishes what the other is saying (Local, 2005). Back-channels indicate the listener is paying attention, and they are sometimes regarded as a kind of collaborative overlap. They are short affirmative signals like ‘mhm’, ‘yeah’ or ‘really?’, and they serve to build rapport between speakers (Tannen, 1994). Speakers use back-channels to show interest and that they are encouraging the other speaker to continue speaking. In American English, collaborative overlaps and back-channels are claimed to be more frequent among women while men tend to use more competitive overlaps (Tannen, 1994).

In Brunei, the education system is bilingual, as students are taught in both Standard Malay and English (Jones, 1995). Brunei’s official language is Standard Malay, which is used in official correspondence and as a medium in schools (Jones, 2012). There are seven Malay communities in Brunei and each has their own dialect of Malay. The most commonly used dialect of Malay in Brunei is Brunei Malay (Jones, 2012). Before the introduction of the new education system SPN21 in 2009, children in Brunei received Malay medium education until they reached Primary 4 when they were introduced to English medium education (Jones, 2012). The recent education system introduces English medium education in some subjects to students at Primary 1, so this is much earlier than before (Jones, 2012).

Methodology
This research investigates same-sex conversations among first year undergraduates studying English Language and Linguistics at Universiti Brunei Darussalam. The map task is used as a means for obtaining data for this research. It is a standard method of obtaining data used by researchers in studying many aspects of speech (Brown, Anderson, Shillcock & Yule, 1984). Mat Nayan and Setter (2011), and Gut and Pillai (2014) have used the map task in their research on Malay speakers of English in Malaysia. It is intended to provide “a common set of materials for the simultaneous study of several different linguistic phenomena” (Anderson et al, 1991, p.353).

In ordinary conversational data, there is no guarantee that the tokens of speech of interest will appear in naturally occurring speech, and there may be insufficient data to support any claims in a study. Task-oriented conversations may lack the spontaneity of natural conversations, but they are designed to draw out specific examples of linguistic behaviour in controlled conditions and thus ensure that the particular research needs are met (Anderson et al, 1991). The map task functions to prompt unscripted conversations in addition to increasing the probability of occurrence of particular tokens of speech that are being studied. In this study, unlike many found in the HCRC map task corpus, the speakers are friends with each other and this enables them to feel comfortable so they are more likely to communicate with each other naturally as they would in ordinary conversation.

The speakers were given the map task created by Faahirah (2016). Figure 1 shows the two maps used for this map task; one speaker acts as the Leader (L) and the other as the Follower (F). The Leader’s map has a path while the Follower’s map does not, and the task is for the Leader to guide the Follower from the Start to the Finish. The speakers were seated opposite each other in a room so they could not see each other’s map.

In addition, the two maps have different landmarks. For example on the Leader’s map there is a Hill instead of the Football Field in the Follower’s map. This is to encourage lots of questions as the two speakers have to ask questions to each other in order for the Follower to follow the route.
Figure 1. The Leader’s map is on the left, and the Follower’s map is on the right (from Faahirah, 2016)

There are sixteen recordings; eight female-female and eight male-male conversations. The readings will be referred to by the gender (F or M) followed by a digit (1–8). The speakers all have English as their second language and Brunei Malay as their first language. All are bilingual and started receiving formal English language lessons in school at around 5 years old when they enrolled in kindergarten. The age range of the speakers is 19 to 25 years.

Data
The total duration and number of words spoken in each recording are listed in Table 1:

<table>
<thead>
<tr>
<th>Recording</th>
<th>Duration (Seconds)</th>
<th>Total Number of words</th>
</tr>
</thead>
<tbody>
<tr>
<td>FG1</td>
<td>147</td>
<td>303</td>
</tr>
<tr>
<td>FG2</td>
<td>169</td>
<td>336</td>
</tr>
<tr>
<td>FG3</td>
<td>170</td>
<td>408</td>
</tr>
<tr>
<td>FG4</td>
<td>175</td>
<td>469</td>
</tr>
<tr>
<td>FG5</td>
<td>199</td>
<td>424</td>
</tr>
<tr>
<td>FG6</td>
<td>142</td>
<td>347</td>
</tr>
<tr>
<td>FG7</td>
<td>176</td>
<td>456</td>
</tr>
<tr>
<td>FG8</td>
<td>216</td>
<td>520</td>
</tr>
<tr>
<td>MG1</td>
<td>145</td>
<td>331</td>
</tr>
<tr>
<td>MG2</td>
<td>126</td>
<td>264</td>
</tr>
<tr>
<td>MG3</td>
<td>168</td>
<td>405</td>
</tr>
<tr>
<td>MG4</td>
<td>160</td>
<td>410</td>
</tr>
<tr>
<td>MG5</td>
<td>221</td>
<td>621</td>
</tr>
<tr>
<td>MG6</td>
<td>242</td>
<td>452</td>
</tr>
<tr>
<td>MG7</td>
<td>243</td>
<td>602</td>
</tr>
<tr>
<td>MG8</td>
<td>293</td>
<td>917</td>
</tr>
</tbody>
</table>

Table 1. Total duration of recordings and number of words spoken
Classification of Overlaps

The researcher identified all overlaps from the recordings and classified them as competitive, collaborative, or back-channeling. A second researcher then performed the same task, and the results for identifying and classifying overlaps were then compared. The agreement for identifying overlaps is 83.1% and the agreement for classifying overlaps is 74.6%. As mentioned before, identifying overlaps is more straightforward because it is simply when two speakers are speaking simultaneously, but classifying them is more difficult as it is interpretive rather than descriptive. Example (1) from FG3 illustrates an instance where there was agreement on classifying the overlap. (The number after FG1 indicates the time in seconds from the start of the recording.)

(1) FG3: 147

L: do you have a Hill?
F: no i don’t have a Hill <1> where is that </1>
L: <1> what do you? have </1>
F: i have a Football Field

In this extract, L takes the turn speaking before F finishes. At this time in the conversation, the speakers were both enthusiastic and both had rising intonation. A combination of rising pitch and volume is sometimes used by speakers where overlapping occurs (French & Local, 1983), and the two features are likely to occur during competitive overlaps (Schegloff, 2000). However, in this case L anticipated what F was about to say. The speakers are friends and the enthusiasm was obvious. Both researchers agreed that this is an instance of a collaborative overlap and not a competitive overlap.

Example (2) is where both listeners agreed it is competitive. (Brunei Malay words are indicated in italics and the translation is in brackets next to them.)

(2) FG3: 34

L: okay (.) and then you: erm pass by the East Lake?
F: there’s a East Lake? where okay okay <1> the East Lake is </1>
L: <1> oh wait oh wait </1> i think i aha okay salah salah {mistake, mistake}

In this case, L did not wait for F to finish speaking. L wished to correct herself and has more to say. Both speakers were also speaking with rising pitch. L continues speaking after the overlap while F stops. This is an obvious instance of competitive overlap, and it can be considered an interruption.

Example (3) shows an instance where both listeners agreed it is back-channeling.

(3) FG3: 105

F: i don’t have a second Fenced Meadow wait wait where is that
L: it’s er:m (.) erm right (.) in like in between the (.) like er <tsk> it’s (.) right (1) right? next to the Abandoned Cottage <1> left </1>
F: <1> aha? </1>
L: to the Abandoned Cottage

The overlap in this extract is an example where both listeners agree that it is an instance of back-channeling. L seems to be uncertain of how to describe the route and her struggle to give clear instructions is indicated by frequent pauses, the use of filler ‘erm’, and an alveolar click ‘tsk’ before a long pause of about one second. F’s back-channeling is signaling to L that she is listening and is reassuring that she understands L’s instructions. Example (1), (2) and (3) illustrate instances in which there was agreement. However, sometimes there was disagreement.
Example (4) illustrates an instance where there was disagreement over classifying an overlap in the MG7 recording.

(4) MG7: 231

L: yeah (.) you’ll get there (.)
F: <1> i’ll get <1/> to:
L: <1> real soon </1/> (.) near the <2> Farmed land </2>
F: <2> Farm? </2>
L: that’s the place you’re looking for

In this example, there was a disagreement about the first overlap. The researcher heard it as competitive while the second listener heard it as collaborative. For this paper, the judgement of the researcher is adopted, so it is classified as a competitive overlap. For the second overlap in Example (4), there was agreement by both listeners that it is collaborative.

Example (5), from FG7, is another example of disagreement.

(5) FG7: 53

F: should i turn to the left? or to the right
L: to the:: to your: wait (.) to your: (.) right (.) <1> right to the right </1>
F: <1> okay? </1/> (.) <2> so just </2>
L: <2> and then? </2>
F: go straight? and (.) turn to the right=
L: =yeah (.) and then? when you: arrive at the Fenced? (.) you (.) just go straight?
and then to your: (.) left (.) to the left (.) to an Abandoned Cottage (.) can you
see that (.) Abandoned Cottage

Both listeners agree that the first overlap is an instance of back channeling. However, there was disagreement about the second overlap. The researcher heard it as back-channeling while the second listener heard it as competitive. The second overlap occurs after a short pause and L uses a rising intonation. It is uncertain whether L’s utterance functions as back-channeling, or as a question for F, or the beginning of L’s next utterance. The judgement of the researcher is adopted, so it is classified as back-channeling.

Example (6) is where there is back-channeling and laughter.

(6) MG5: 105

L: we should fish (.) i don’t know what <1> fish </1>
F: <1> okay </1>
L: this is <2> @ @ @ </2>
F: <2> yeah </2>
L: gila kali {i’m crazy maybe}
F: @
L: <3> @ @ @ </3>
F: <3> @ @ hhh </3>

The first overlap from this extract is an instance of back-channeling by F. In the second overlap, L is laughing and then later both speakers laugh together during the third overlap. Laughter in this study is categorized as a form of collaborative speech when it occurs in an overlap as it often invites the other speaker to join in the amusement or take the turn speaking (Jefferson, 1985). However, in the second overlap F is saying “yeah” when L laughs, and this is a form of back-channeling. Back-channeling is recognized as separate from collaborative overlap in this paper. For the second overlap, both researchers agreed to label it as collaborative because the back-channeling by F occurs during L’s turn.
Another uncertainty is shown in Example (7) from MG8.

(7) MG8: 164

F: okay (.) so <1> i guess i’ll going in? </1>
L: <1> on the left side? </1> (. (.) yeah (.) and then you do: a <spel> u </spel> turn to the New Bridge (.) just go to the: (.) right (1) the most right neat Bridge (.)
F: okay <2> okay </2>
L: <2> just go </2> straight into the Bridge? are you? at the Bridge?

In this case, both listeners were unsure if the overlaps are collaborative or competitive. In the first overlap, both speakers are using rising intonation. L seems to be helping F and so this is likely to be collaborative. The pause after L’s speech and reassuring ‘yeah’ as well as the fact that F does not continue speaking highly suggests that F recognises L’s overlap as being collaborative. The second overlap on the other hand, seems to be more competitive. L speaks fast and it is not clear whether F wants to say more. However F’s ‘okay’ has a falling tone, and so it may be an indication that F is signaling to L that he understands and is done following his instructions. The researcher decided to label both instances as collaborative overlaps. The second listener labeled the second overlap as competitive.

Speaking Rate

Throughout the MG8 recording, L has a fast speaking rate and this may have an impact on overlaps. Speaking rate is speaker dependent and variable (Crystal & House, 1990), and a fast speech rate may cause more overlaps in a conversation, so it is important to calculate speaking rate. The best method of calculating speech rate is uncertain. In this paper, speech rate is measured using syllables per second (sps). Some researchers use syllables per second and others use words per second. For example, Crystal and House (1990) calculated speech rate by looking at average syllable duration for every pause free stretch of speech, and Tauroza and Allison (1990) measured words per minute.

In calculating speaking rate, we should exclude pauses. The average speaking rate or syllables per second for each speaker is calculated by looking at five instances of the longest stretch of speech from each speaker. From these five instances, the number of syllables are counted and divided by the duration. Stuttering is considered as one syllable, for example “St-Start” is two syllables. Alveolar clicks and laughter are considered as pauses and so they are avoided in the calculation. Obviously, measurements based on just five utterances overlook changes in speech rate as speakers may speak fast and then slow down. However, it is hoped that calculating speech rate based on five utterances provides an indication of overall speak rate and its impact on overlaps.

Results

The average speaking rate in syllables per second (sps) for females is 3.51 sps and the average for males is 4.07 sps. These results suggest that the men speak slightly faster than women, but there is no significant difference as there is too much variation in the data (t = 0.70, df = 14; independent samples, 2-tailed, p = 0.50, ns). For example, from the female recordings, the highest value is from FG4, with 4.20 sps and the lowest value is 3.05 sps from FG7, in addition to the highest from the males is 5.17 sps from MG5 and the lowest value is 3.34 sps from MG1.

The rate of overlap is calculated by counting the total number of overlaps in a conversation and dividing it by the duration of the conversation in minutes. The average overlaps per minute (opm) for females is 4.39 opm and it is 5.06 opm for the males. The men have slightly more frequent overlaps than women, but there is no significant difference as there is too much variation in the data (t = 0.79, df = 14; independent samples, 2-tailed, p = 0.28, ns). For example,
for the females, FG1 has 1.22 opm, while FG8 has 9.17 opm; for the males, MG4 has 2.62 opm and MG5 has 7.61 opm, so the range for each sex is considerable.

Table 2 shows the speaking rate and rate of overlaps for each recording.

<table>
<thead>
<tr>
<th>Recording</th>
<th>Speech Rate (sps)</th>
<th>Average Speech Rate (sps)</th>
<th>Total Overlaps</th>
<th>Overlaps per minute (opm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FG1</td>
<td>3.34 L 3.88 F</td>
<td>3.61</td>
<td>3</td>
<td>2.90</td>
</tr>
<tr>
<td>FG2</td>
<td>2.71 L 3.94 F</td>
<td>3.32</td>
<td>8</td>
<td>4.76</td>
</tr>
<tr>
<td>FG3</td>
<td>3.36 L 4.32 F</td>
<td>3.84</td>
<td>18</td>
<td>5.71</td>
</tr>
<tr>
<td>FG4</td>
<td>4.64 L 3.76 F</td>
<td>4.20</td>
<td>9</td>
<td>2.63</td>
</tr>
<tr>
<td>FG5</td>
<td>3.12 L 3.37 F</td>
<td>3.24</td>
<td>8</td>
<td>7.60</td>
</tr>
<tr>
<td>FG6</td>
<td>3.42 L 3.29 F</td>
<td>3.36</td>
<td>10</td>
<td>4.46</td>
</tr>
<tr>
<td>FG7</td>
<td>3.13 L 2.96 F</td>
<td>3.05</td>
<td>17</td>
<td>6.42</td>
</tr>
<tr>
<td>FG8</td>
<td>2.43 L 4.46 F</td>
<td>3.44</td>
<td>33</td>
<td>6.14</td>
</tr>
<tr>
<td>MG1</td>
<td>3.42 L 3.26 F</td>
<td>3.34</td>
<td>7</td>
<td>1.22</td>
</tr>
<tr>
<td>MG2</td>
<td>2.47 L 6.46 F</td>
<td>4.46</td>
<td>10</td>
<td>2.84</td>
</tr>
<tr>
<td>MG3</td>
<td>3.79 L 4.01 F</td>
<td>3.90</td>
<td>16</td>
<td>6.35</td>
</tr>
<tr>
<td>MG4</td>
<td>4.02 L 3.50 F</td>
<td>3.76</td>
<td>7</td>
<td>3.09</td>
</tr>
<tr>
<td>MG5</td>
<td>5.01 L 5.33 F</td>
<td>5.17</td>
<td>28</td>
<td>2.41</td>
</tr>
<tr>
<td>MG6</td>
<td>3.22 L 3.71 F</td>
<td>3.46</td>
<td>18</td>
<td>4.23</td>
</tr>
<tr>
<td>MG7</td>
<td>3.92 L 3.36 F</td>
<td>3.64</td>
<td>26</td>
<td>5.80</td>
</tr>
<tr>
<td>MG8</td>
<td>5.09 L 4.51 F</td>
<td>4.80</td>
<td>30</td>
<td>9.17</td>
</tr>
</tbody>
</table>

Table 2. Speaking rate and number of overlaps in each recording.

There is a positive correlation between average speech rate and number of overlaps ($r = 0.33$), so for example FG1 has a low speech rate and few overlaps, while MG8 has a high speech rate and lots of overlaps, but it is not significant ($t = 1.30$, df = 14, $p = 0.21$). However there is also substantial variation in the data. For example, FG4 and MG2 have relatively fast speaking rates but only few overlaps, while MG7 which has a slower speaking rate but more frequent overlaps. Also, MG5 has the highest speaking rate but with one of the lowest rate of overlaps per minute.

There are 106 overlaps in total for females and 142 overlaps for males. Table 3 shows the number and types of overlaps that occur.

<table>
<thead>
<tr>
<th>Type of overlap</th>
<th>Female</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competitive</td>
<td>48</td>
<td>30</td>
</tr>
<tr>
<td>Collaborative</td>
<td>35</td>
<td>54</td>
</tr>
<tr>
<td>Back-Channels</td>
<td>23</td>
<td>58</td>
</tr>
</tbody>
</table>

Table 3. Total number of each type of overlap.
The results show that there is a difference in the occurrence of the different types of overlap ($\chi^2 = 18.5$, df $= 2$; $p < 0.0001$). Indeed, there are more competitive overlaps among women than men, while the men have more collaborative overlaps and back-channels.

Discussion
The results of this study show there is no significant difference in the speaking rate of men and women, and that men have more overlapping speech than women. There may be a link between speaking rate and overlaps in this case, but further analysis is needed.

Women have more competitive overlaps, while men have more collaborative overlaps and back-channels. This is the opposite of what was observed in studies conducted in the USA and UK. It seems, therefore there is a difference in the speech habits of speakers in Brunei and the USA. Speaking rate and number of words spoken by the men in this study may have influenced the number of overlaps that occur. Again, further analysis is required to conclude whether overlaps are used differently between men and women in Brunei.

There are obvious limitations to this research. The number of participants is too few in order to make a confident conclusion about speakers in Brunei. Speakers belonging in different social classes may have different speech styles. The speakers in each pairing are also friends and this may significantly influence the frequency of overlaps in the conversation because overlaps occur more frequently between speakers who have close relationships with each other (Tannen, 1994). Speakers who are unfamiliar with each other might have a different outcome for overlapping speech.

Furthermore, this research looks at same-sex conversations and we do not know what would happen in mixed sex conversations. Zimmerman and West (1975) looked at both same-sex and cross-sex conversations in both public and private settings and found that there were fewer overlaps within same-sex conversations, but far more frequent interruptions by men in mixed sex conversations. It would be interesting to see if this is true for Brunei as well.

The frequency of overlapping speech varies across speech activities (Kurtic et al, 2012). So it would be interesting to investigate overlaps in ordinary conversations rather than the task-based activity studied here. Overlapping speech is more acceptable in some cultures, so it would also be interesting to see if the speakers have a different speech style when speaking Malay.

References

